
THE ERDŐS-KAC THEOREM

STEVE FAN

Abstract. The celebrated Erdős-Kac theorem states that if ω(n) denotes the number of
distinct prime divisors of a positive integer n, then the distribution of

ω(n)− log log n√
log log n

is the standard normal distribution with mean 0 and variance 1. The main objective of this
expository note is to present a proof of this result by estimating the moments of the above
quantity. Our exposition follows basically the argument of Granville and Soundararajan [5].

1. Introduction

Throughout the paper, let R denote the field of real numbers, C the field of complex
numbers, N+ the set of positive integers, and P the set of prime numbers. For any x ∈ R,
let bxc denote the integer part of x. We shall also reserve the letters p and q for primes and
denote by π(x) the number of primes up to x. For every n ∈ N+, let ω(n) denote the number
of distinct prime factors of n. Then we have by a famous theorem of Mertens [7, Theorem
427] that ∑

n≤x

ω(n) =
∑
n≤x

∑
p|n

1 =
∑
p≤x

⌊
x

p

⌋
= x

∑
p≤x

1

p
+O(x) = x log log x+O(x).

Roughly speaking, this means that ω(n) is log log x on average for n ≤ x. A more precise
result obtained by Hardy and Ramanujan [6] states that the normal order of ω(n) is log log n.
This means that given any ε > 0, there exists xε ≥ 2 such that for all x ≥ xε, the inequality

|ω(n)− log log n| ≥ ε log log n

holds for at most εx integers n ≤ x. Turán [11] showed that∑
n≤x

(ω(n)− log log n)2 = (1 + o(1))x log log x (1.1)

for sufficiently large x. Turán’s result immediately implies that the normal order of ω(n) is
log log n, since #{

√
x < n ≤ x : |ω(n)− log log n| ≥ ε log log n} is bounded above by

1

(ε log log n)2

∑
n≤x

(ω(n)− log log n)2 ≤ (1 + o(1))x log log x

ε2(log log x− log log 2)2

= (1/ε2 + o(1))
x

log log x

� εx

for all sufficiently large x. In 1939 Mark Kac gave a lecture at Princeton on the average
number of prime factors of a random integer. At the end of his lecture, he described his
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heuristic for the distribution of ω(n). He suggested that the distribution of ω(n) is perhaps
normal but had difficulty verifying this. Paul Erdős, who was in the audience and, as Kac
recalled (see [8]), half-dozed through most of the lecture, interrupted and announced that he
found the solution. This led to the collaboration between Kac and Erdős, who showed that

ω(n)− log log n√
log log n

behaves like a normal random variable with mean 0 and variance 1. More precisely, they [4]
proved that

lim
x→+∞

1

x
·#
{
n ≤ x :

ω(n)− log log n√
log log n

≤ a

}
=

1√
2π

∫ a

−∞
e−t

2/2 dt.

It is not hard to see that the above equality holds with log log n replaced by log log x. In [4]
they proved a stronger result concerning strongly additive functions (see Theorem 6.1 below).
Their original proof uses the central limit theorem and Brun’s method from sieve theory.
The main objective of this expository note is to present a proof of this result following the
argument of Granville and Soundararajan [5]. Our writing is inspired by a lecture on this
topic delivered by Lester and Rudnick [9] in 2015 at the University of Montreal.

2. The Second Moment of ω(n)

Turán’s result (1.1) tells us that |ω(n)− log log n| is roughly of size log log n. As a warm-
up, we shall prove a refinement of this result. The proof is an adaptation of that given in
[11]. We first prove the following lemma.

Lemma 2.1. For all x ≥ e one has∑
p≤x

(log p)k

p
=

1

k
(log x)k +O((log x)k−1)

for all k ∈ N+, where the implicit constant in the error term is independent of k.

Proof. A standard result [7, Theorem 425] in prime number theory states that∑
p≤x

log p

p
= log x+O(1).

By partial summation we obtain∑
p≤x

(log p)k

p
= (log x+O(1))(log x)k−1 − (k − 1)

∫ x

1

(log t+O(1))
(log t)k−2

t
dt

=
1

k
(log x)k +O((log x)k−1)

for all k ≥ 2. �

Next, we show
∞∑
n=1

1

2nn2
=
π2

12
− (log 2)2

2
.

This is a special case of the following lemma [1, Formula 27.7.3, §27.7].
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Lemma 2.2. For every z ∈ C with |z| ≤ 1, define

f(z) :=
∞∑
n=1

zn

n2
.

Then

f(z) + f(1− z) =
π2

6
− log z log(1− z)

for all z ∈ C with |z| ≤ 1 and |1 − z| ≤ 1, where log is the principle branch of the natural
logarithm. In particular, we have

∞∑
n=1

1

2nn2
=
π2

12
− (log 2)2

2
.

Proof. It is clear that f(z) is continuous on the closed unit disk |z| ≤ 1 and analytic in the
open unit disk |z| < 1. Since

f ′(z) =
∞∑
n=1

zn−1

n
= − log(1− z)

z
,

we have

f ′(z) +
d

dz
(f(1− z)) = − log(1− z)

z
+

log z

1− z
= − d

dz
(log z log(1− z)).

Integrating both sides with respect to z we obtain

f(z) + f(1− z) = c− log z log(1− z),

where c ∈ C is some constant. Letting z → 0 and using the fact that f(1) = π2/6, we find
c = π2/6. The second part of the lemma follows on taking z = 1/2. �

Now we prove the following refinement of Turán’s result (1.1). The proof presented below
was found by the author himself, though it may be far from new.

Theorem 2.3. For sufficiently large x one has∑
n≤x

(ω(n)− log log x)2 = x log log x+ Cx+O

(
x log log x

log x

)
,

where

C = b(2b− 2 log 2 + 1)−
∑
p

1

p2
−
(
π2

6
− (log 2)2

)
,

b = γ +
∑
p

[
log

(
1− 1

p

)
+

1

p

]
,

and γ = 0.5772... is Euler’s constant.

Proof. Note that∑
n≤x

(ω(n)− log log x)2 =
∑
n≤x

ω(n)2 − 2 log log x
∑
n≤x

ω(n) + bxc(log log x)2.
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Mertens’ theorem [7, Theorems 427, 428] says that∑
p≤x

1

p
= log log x+ b+O

(
1

log x

)
.

Since the number π(x) of primes up to x is O(x/ log x) by Chebyshev’s estimate [7, Theorem
7], we have∑
n≤x

ω(n) =
∑
n≤x

∑
p|n

1 =
∑
p≤x

⌊
x

p

⌋
= x

∑
p≤x

1

p
+O

(
x

log x

)
= x log log x+ bx+O

(
x

log x

)
.

It follows that∑
n≤x

(ω(n)− log log x)2 =
∑
n≤x

ω(n)2 − x(log log x)2 − 2bx log log x+O

(
x log log x

log x

)
.

To prove the theorem, it suffices to show∑
n≤x

ω(n)2 = x(log log x)2 + (2b+ 1)x log log x+ Cx+O

(
x log log x

log x

)
. (2.1)

Now we compute∑
n≤x

ω(n)2 =
∑
n≤x

∑
p|n,q|n

1 =
∑
p,q≤x

∑
n≤x
p|n,q|n

1 =
∑
p≤x

⌊
x

p

⌋
+
∑
pq≤x
p 6=q

⌊
x

pq

⌋
.

By Chebyshev’s estimate [7, Theorem 7], we have∑
pq≤x
p 6=q

1 = 2
∑
p<
√
x

∑
p<q≤x/p

1� x
∑
p<
√
x

1

p log(x/p)
� x

log x

∑
p<
√
x

1

p
� x log log x

log x
.

It follows that ∑
pq≤x
p 6=q

⌊
x

pq

⌋
= x

∑
pq≤x
p6=q

1

pq
+O

(
x log log x

log x

)

= x
∑
pq≤x

1

pq
− x

∑
p≤
√
x

1

p2
+O

(
x log log x

log x

)

= x
∑
pq≤x

1

pq
− x

∑
p

1

p2
+O

(
x log log x

log x

)
.

Thus we obtain∑
n≤x

ω(n)2 = x log log x+ bx+ x
∑
pq≤x

1

pq
− x

∑
p

1

p2
+O

(
x log log x

log x

)
.

To prove (2.1), it is hence sufficient to show∑
pq≤x

1

pq
= (log log x)2 +2b log log x+2b(b− log 2)−

(
π2

6
− (log 2)2

)
+O

(
log log x

log x

)
. (2.2)
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We now write ∑
pq≤x

1

pq
= 2

∑
p≤
√
x

1

p

∑
q≤x/p

1

q
−
∑

p,q≤
√
x

1

pq
. (2.3)

It is easy to see that∑
p,q≤

√
x

1

pq
= (log log x)2 + 2(b− log 2) log log x+O

(
log log x

log x

)
. (2.4)

Note that ∑
p≤
√
x

1

p

∑
q≤x/p

1

q
=
∑
p≤
√
x

1

p

(
log log

x

p
+ b+O

(
1

log(x/p)

))
. (2.5)

Clearly, we have

b
∑
p≤
√
x

1

p
= b log log x+ b(b− log 2) +O

(
1

log x

)
(2.6)

and ∑
p≤
√
x

1

p log(x/p)
≤ 2

log x

∑
p≤
√
x

1

p
� log log x

log x
. (2.7)

Finally, we see that∑
p≤
√
x

1

p
log log

x

p
= log log x

∑
p≤
√
x

1

p
+
∑
p≤
√
x

1

p
log

(
1− log p

log x

)
(2.8)

and that

log log x
∑
p≤
√
x

1

p
= (log log x)2 + (b− log 2) log log x+O

(
log log x

log x

)
. (2.9)

From Lemmas 2.1 and 2.2 it follows that∑
p≤
√
x

1

p
log

(
1− log p

log x

)
= −

∞∑
k=1

1

k(log x)k

∑
p≤
√
x

(log p)k

p

= −
∞∑
k=1

1

2kk2
+O

(
1

log x

∞∑
k=1

1

2k−1k

)

= −
(
π2

12
− (log 2)2

2

)
+O

(
1

log x

)
.

Combining this estimate with (2.3)–(2.9) gives (2.2). �
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3. The Turán-Kublius Inequality

An arithmetic function f : N+ → C is called additive if f(mn) = f(m) + f(n) for all
m,n ∈ N+ with gcd(m,n) = 1. Thus ω(n) is an additive function. In this section, we
prove the following inequality of Turán and Kubilius concerning the second moment of f(n).
It provides a natural extension of the second moment of ω(n) discussed in the preceding
section. Here we do not pursue the best version of this inequality that is currently known
nor its applications to special additive functions. The interested reader is referred to [10,
Chapter III.6] for detailed discussions on this topic.

Theorem 3.1 (Turán-Kubilius inequality). Let f : N+ → C be an additive function. Then

1

x

∑
n≤x

|f(n)− Af (x)|2 � Bf (x), (3.1)

where

Af (x) =
∑
pk≤x

f(pk)

pk

(
1− 1

p

)
,

Bf (x) =
∑
pk≤x

|f(pk)|2

pk
.

Proof. Let f ∗ : N+ → C be the additive function defined by

f ∗(pk) :=

{
f(pk) if pk ≤

√
x,

0 otherwise.

We first prove (3.1) for f ∗. To this end, let n be a random variable chosen uniformly from
N+ ∩ [1, x]. For each prime power pk, define 1pk : N+ → {0, 1} by

1pk(n) :=

{
1 if pk ‖ n,
0 otherwise.

Then
f ∗(n) =

∑
pk≤x

f ∗(pk)1pk(n).

It is not hard to see that

E[1pk(n)] =
bx/pkc − bx/pk+1c

bxc
=
x/pk(1− 1/p) +O(1)

x+O(1)
=

1

pk

(
1− 1

p

)
+O

(
x−1
)

and

Var[1pk(n)] = E[1pk(n)2]− E[1pk(n)]2 � 1

pk

for all pk ≤ x. Moreover, if p, q are distinct primes, then

E[1pk(n)1ql(n)] =
bx/(pkql)c − bx/(pk+1ql)c − bx/(pkql+1)c+ bx/(pk+1ql+1)c

bxc

=
1

pkql

(
1− 1

p

)(
1− 1

p

)
+O

(
x−1
)
.
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Hence

Cov(1pk(n),1ql(n)) = E[1pk(n)1ql(n)]− E[1pk(n)]E[1ql(n)] = O
(
x−1
)
.

It follows that

E[f ∗(n)] = Af∗(x) +O

1

x

∑
pk≤
√
x

|f ∗(pk)|


and

Var[f ∗(n)] =
∑
pk≤x

|f ∗(pk)|2Var[1pk(n)] + 2
∑

pk,ql≤x
p 6=q

f ∗(pk)f ∗(ql)Cov(1pk(n),1ql(n))

� Bf∗(x) +
1

x

 ∑
pk≤
√
x

|f ∗(pk)|

2

.

Note that

E[|f ∗(n)− Af∗(x)|2] ≤ 2Var[f ∗(n)] + 2E
[
|E[f ∗(n)]− Af∗(x)|2

]
� Bf∗(x) +

1

x

 ∑
pk≤
√
x

|f ∗(pk)|

2

,

where we have used the arithmetic mean-quadratic mean inequality∣∣∣∣∣
n∑
i=1

ai

∣∣∣∣∣
2

≤ n
n∑
i=1

|ai|2 (3.2)

for all a1, ..., an ∈ C. Thus we have

1

x

∑
n≤x

|f ∗(n)− Af∗(x)|2 � Bf∗(x) +
1

x

 ∑
pk≤
√
x

|f ∗(pk)|

2

.

By (3.2) we have  ∑
pk≤
√
x

|f ∗(pk)|

2

≤
√
x
∑
pk≤
√
x

|f ∗(pk)|2 ≤ xBf∗(x).

It follows that
1

x

∑
n≤x

|f ∗(n)− Af∗(x)|2 � Bf∗(x). (3.3)

Now we establish (3.1) for f . Suppose that x ≥ 9. Since (3.2) gives

|f(n)− Af (x)|2 ≤ 3
(
|f(n)− f ∗(n)|2 + |f ∗(n)− Af∗(x)|2 + |Af∗(x)− Af (x)|2

)
,

we have
1

x

∑
n≤x

|f(n)− Af (x)|2 � 1

x

∑
n≤x

|f(n)− f ∗(n)|2 +Bf∗(x) + |Af∗(x)− Af (x)|2
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by (3.3). For every positive integer n, denote by P (n) the largest prime power dividing n
with the convention that P (1) = 1. Note that for all n ≤ x we have

f(n)− f ∗(n) =
∑
pk>
√
x

pk‖n

f(pk) =

{
f(P (n)) if P (n) >

√
x,

0 otherwise.

Hence
1

x

∑
n≤x

|f(n)− f ∗(n)|2 =
1

x

∑
n≤x

P (n)>
√
x

|f(P (n))|2

=
1

x

∑
√
x<pk≤x

|f(pk)|2
∑
n≤x
pk‖n

1

=
1

x

∑
√
x<pk≤x

|f(pk)|2
(⌊

x

pk

⌋
−
⌊

x

pk+1

⌋)

�
∑

√
x<pk≤x

|f(pk)|2

pk
.

Finally, we have

|Af∗(x)− Af (x)|2 =

∣∣∣∣∣∣
∑

√
x<pk≤x

f(pk)

pk

(
1− 1

p

)∣∣∣∣∣∣
2

≤

 ∑
√
x<pk≤x

|f(pk)|2

pk

 ∑
√
x<pk≤x

1

pk

(
1− 1

p

)2


≤

 ∑
√
x<pk≤x

|f(pk)|2

pk

 ∑
√
x<pk≤x

1

pk


by Cauchy-Schwarz inequality. From Mertens’ theorem [7, Theorem 427] it follows that∑

√
x<pk≤x

1

pk
=

∑
√
x<p≤x

1

p
+O(1) = log log x− log log

√
x+O(1) = O(1).

Hence

|Af∗(x)− Af (x)|2 �
∑

√
x<pk≤x

|f(pk)|2

pk
.

Collecting the above estimates we conclude that

1

x

∑
n≤x

|f(n)− Af (x)|2 � Bf∗(x) +
∑

√
x<pk≤x

|f(pk)|2

pk
� Bf (x).

This completes the proof. �
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4. The Erdős-Kac Theorem: Preliminary Lemmas

The Turán-Kublius inequality provides an upper bound for the second moment of a gen-
eral additive function f(n). One may wonder about the higher moments of f(n) and the
distribution of its values. The Erdős-Kac theorem asserts that under certain conditions,
the limit distribution of the normalized values of f(n) is a Gaussian distribution. In this
section, we collect some preliminary results needed for the proof of the Erdős-Kac theorem.
In what follows, we shall denote by τ(n) the number of positive divisors of n ∈ N+. So if
n = pα1

1 · · · pαrr is the prime factorization of n. then

τ(n) =
r∏
i=1

(1 + αi).

Let ϕ : N+ → N+ denote Euler’s totient function, which counts the number of positive
integers a ≤ n such that gcd(a, n) = 1 . Then we have [7, Theorem 62]

ϕ(n) = n
r∏
i=1

(
1− 1

pi

)
(4.1)

for n = pα1
1 · · · pαrr . Let µ : N+ → Z denote the Möbius function defined by

µ(n) :=

{
(−1)r if n is a product of r ≥ 0 distinct primes,

0 otherwise.

It is well known that µ satisfies the following identity [7, Theorem 263]

∑
d|n

µ(d) =

{
1 if n = 1,

0 otherwise.

Moreover, µ is multiplicative. Hence we can rewrite (4.1) as

ϕ(n) = n
∑
d|n

µ(d)

d
.

Our first lemma is the following well-known result from elementary number theory.

Lemma 4.1. Let m ∈ N+. Then

∑
n≤x

gcd(n,m)=1

1 =
ϕ(m)

m
x+O(τ(m)).
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Proof. We compute ∑
n≤x

gcd(n,m)=1

1 =
∑
n≤x

∑
d|gcd(n,m)

µ(d)

=
∑
d|m

µ(d)
∑
n≤x
d|n

1

=
∑
d|m

µ(d)
⌊x
d

⌋
= x

∑
d|m

µ(d)

d
+O(τ(m))

= x · ϕ(m)

m
+O(τ(m)).

This finishes the proof. �

We have defined additive functions in Section 3. An additive function f : N+ → R is called
strongly additive if f(pα) = f(p) for all p ∈ P and α ∈ N+. Given a strongly additive function
f , we define fp(n) for every p ∈ P by

fp(n) :=

{
f(p)(1− 1/p) if p | n,
−f(p)/p otherwise.

For any positive integer m = pα1
1 · · · pαrr , we set

fm(n) :=
r∏
i=1

(fpi(n))αi .

Now we prove the the following lemma.

Lemma 4.2. Let f : N+ → R be a strongly additive function such that |f(p)| ≤ 1 for all
p ∈ P. Then for x ≥ 1 and z = x1/ log(B(x)+3), we have

f(n)−
∑
p≤x

f(p)

p
=
∑
p≤z

fp(n) +O(log(B(x) + 3)) (4.2)

for all n ≤ x, where

B(x) :=

(∑
p≤x

f(p)2

p

)1/2

.

Proof. For n ≤ x we have ∑
p≤x

f(p)

p
= −

∑
p≤x

fp(n) +
∑
p|n

f(p).

Since f is strongly additive, we have

f(n)−
∑
p≤x

f(p)

p
=
∑
p|n

f(p)−
∑
p≤x

f(p)

p
=
∑
p≤x

fp(n). (4.3)
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To prove (4.2), it suffices to show∑
z<p≤x

fp(n) =
∑
z<p≤x
p|n

f(n)−
∑
z<p≤x

f(p)

p
= O(log(B(x) + 3)).

Since |f(p)| ≤ 1 for all p ∈ P, we have∑
z<p≤x

f(p)

p
= O

( ∑
z<p≤x

1

p

)
= O(log log(B(x) + 3)).

Note that if z < n ≤ x, then n is not divisible by any product of more than b(log x)/ log zc =
blog(B(x) + 3)c primes p > z. Hence∑

z<p≤x
p|n

f(n) = O(log(B(x) + 3)).

We conclude that ∑
z<p≤x

fp(n) = O(log(B(x) + 3)),

as desired. �

Given a strongly additive function f , we define a sequence {X(p)}p∈P of independent ran-
dom variables with the property that for every p ∈ P, we have X(p) = f(p) with probability
1/p and X(p) = 0 with probability 1− 1/p. The following lemma connects fm(n) and X(p).

Lemma 4.3. Let f : N+ → R be a strongly additive function such that |f(p)| ≤ 1 for all
p ∈ P. Fix m = pα1

1 · · · pαrr . Then∑
n≤x

fm(n) = x · E

[
r∏
i=1

(
X(pi)−

f(pi)

pi

)αi]
+O(22r) (4.4)

for all x ≥ 1.

Proof. Note that |fm(n)| ≤ 1 for all n ∈ N+. Let a := p1 · · · pr. Observe that if gcd(n, a) = d,
then fm(n) = fm(d). By Lemma 4.1 we have∑

n≤x

fm(n) =
∑
d|a

fm(d)
∑
n≤x

gcd(n,a)=d

1

=
∑
d|a

fm(d)

(
ϕ(a/d)

a/d
· x
d

+O(τ(a/d))

)

= x
∑
d|a

fm(d)
ϕ(a/d)

a
+O(τ(a)2)

= x
∑
d|a

fm(d)
ϕ(a/d)

a
+O(22r).
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To prove (4.4), it is sufficient to show∑
d|a

fm(d)
ϕ(a/d)

a
= E

[
r∏
i=1

(
X(pi)−

f(pi)

pi

)αi]
. (4.5)

It is easy to see that

E

[
r∏
i=1

(
X(pi)−

f(pi)

pi

)αi]
=

r∏
i=1

E
[(
X(pi)−

f(pi)

pi

)αi]

=
r∏
i=1

[
1

pi

(
f(pi)−

f(pi)

pi

)αi
+

(
1− 1

pi

)(
−f(pi)

pi

)αi]
.

On the other hand, we have∑
d|a

fm(d)
ϕ(a/d)

a
=
∑
d|a

ϕ(a/d)

a

r∏
i=1

(fpi(d))αi

=
∑
d|a

ϕ(a/d)

a

r∏
i=1
pi|d

(
f(pi)−

f(pi)

pi

)αi r∏
i=1

pi|(a/d)

(
−f(pi)

pi

)αi

=
∑
d|a

r∏
i=1
pi|d

1

pi

(
f(pi)−

f(pi)

pi

)αi r∏
i=1

pi|(a/d)

(
1− 1

pi

)(
−f(pi)

pi

)αi

=
r∏
i=1

[
1

pi

(
f(pi)−

f(pi)

pi

)αi
+

(
1− 1

pi

)(
−f(pi)

pi

)αi]
.

This proves (4.5). �

By (4.3) we have

∑
n≤x

(
f(n)−

∑
p≤x

f(p)

p

)k

=
∑
n≤x

(∑
p≤x

fp(n)

)k

for all k ∈ N+. Now we relate this quantity to X(p).

Lemma 4.4. Let f : N+ → R be a strongly additive function such that |f(p)| ≤ 1 for all
p ∈ P. For k ∈ N+ and x, z ≥ 1, we have

∑
n≤x

(∑
p≤z

fp(n)

)k

= x · E

(∑
p≤z

(
X(p)− f(p)

p

))k
+O(22kπ(z)k).

Proof. Note that ∑
n≤x

(∑
p≤z

fp(n)

)k

=
∑

p1,...,pk≤z

∑
n≤x

fp1···pk(n).
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By Lemma 4.3 we have∑
n≤x

fp1···pk(n) = x · E

[
k∏
i=1

(
X(pi)−

f(pi)

pi

)]
+O(22k).

It follows that∑
n≤x

(∑
p≤z

fp(n)

)k

=
∑

p1,...,pk≤z

(
x · E

[
k∏
i=1

(
X(pi)−

f(pi)

pi

)]
+O(22k)

)

= x · E

[ ∑
p1,...,pk≤z

k∏
i=1

(
X(pi)−

f(pi)

pi

)]
+O(22kπ(z)k)

= x · E

(∑
p≤z

(
X(p)− f(p)

p

))k
+O(22kπ(z)k).

This completes the proof. �

5. Computing Moments

Let f : N+ → R be a strongly additive function such that |f(p)| ≤ 1 for all p ∈ P. Suppose
further that the series ∑

p

f(p)2

p

diverges. In this section we compute E[Y k
N ] for all k ∈ N+, where

YN =
∑
p≤N

(
X(p)− f(p)

p

)
and N ∈ N+ is sufficiently large. Consider the moment generating function MYN (z) :=

E[ezYN ], where z ∈ C. Then MYN (z) is an entire function and E[Y k
N ] = M

(k)
YN

(0). Note that

MYN (z) = E

[
exp

(
z
∑
p≤N

(
X(p)− f(p)

p

))]
=
∏
p≤N

E
[
exp

(
z

(
X(p)− f(p)

p

))]
and that ∣∣∣∣X(p)− f(p)

p

∣∣∣∣ ≤ |f(p)|
(

1− 1

p

)
< 1.

For each p ≤ z, we have

exp

(
z

(
X(p)− f(p)

p

))
= 1 + z

(
X(p)− f(p)

p

)
+
z2

2

(
X(p)− f(p)

p

)2

+R(z)

for |z| ≤ 1/2, where

R(z) = O

(∣∣∣∣X(p)− f(p)

p

∣∣∣∣3 |z|3
)
.
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Observe that

E
[
X(p)− f(p)

p

]
=
f(p)

p

(
1− 1

p

)
−
(

1− 1

p

)
f(p)

p
= 0,

E

[(
X(p)− f(p)

p

)2
]

=
f(p)2

p

(
1− 1

p

)2

+

(
1− 1

p

)
f(p)2

p2
=
f(p)2

p

(
1− 1

p

)
,

E

[ ∣∣∣∣X(p)− f(p)

p

∣∣∣∣3
]

=
|f(p)|3

p

(
1− 1

p

)3

+

(
1− 1

p

)
|f(p)|3

p3
= O

(
|f(p)|3

p

)
.

This implies

E
[
exp

(
z

(
X(p)− f(p)

p

))]
= 1 +

f(p)2

2p

(
1− 1

p

)
z2 +O

(
|f(p)|3

p
|z|3
)
.

for |z| ≤ 1/2. It follows that for sufficiently large N we have

MYN (z) =
∏
p≤N

[
1 +

f(p)2

2p

(
1− 1

p

)
z2 +O

(
|f(p)|3

p
|z|3
)]

=
∏
p≤N

exp

(
f(p)2

2p

(
1− 1

p

)
z2 +O

(
|f(p)|3

p
|z|3
))

= exp

(
z2

2

∑
p≤N

f(p)2

p

(
1− 1

p

)
+O

(
|z|3

∑
p≤N

|f(p)|3

p

))

= exp

(
z2

2

∑
p≤N

f(p)2

p
+O

(
|z|2 + |z|3

∑
p≤N

|f(p)|3

p

))

= exp

(
z2

2

∑
p≤N

f(p)2

p

)1 +O

(∑
p≤N

f(p)2

p

)−1
+ |z|


for |z| ≤ 1/2. Let q ∈ P be an arbitrary prime with f(q) 6= 0 and let

ZN := YN

(∑
p≤N

f(p)2

p

)−1/2
for N ≥ q. Then the moment generating function MZN (z) of ZN is given by

MZN (z) = MYN

z(∑
p≤N

f(p)2

p

)−1/2 .

Thus we have

MZN (z) = ez
2/2

1 +O

(∑
p≤N

f(p)2

p

)−1
+ |z|

(∑
p≤N

f(p)2

p

)−1/2
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for |z| ≤ δ, where

δ :=
1

2

(∑
p≤q

f(p)2

p

)1/2

.

We conclude that MZN (z) converges to ez
2/2 uniformly for |z| ≤ δ. It follows that

lim
N→∞

M
(k)
ZN

(0) =
dk

dzk
(ez

2/2)z=0 =
dk

dzk

(
∞∑
n=0

z2n

(2n)!!

)
z=0

= µk,

where

µk =

{
k!/(k)!! if 2 | k,
0 if 2 - k.

Therefore, we have

E[Y k
N ] = M

(k)
YN

(0) =

(∑
p≤N

f(p)2

p

)k/2

M
(k)
ZN

(0) = (1 + o(1))

(∑
p≤N

f(p)2

p

)k/2

µk

as N →∞. Combining this estimate with Lemma 4.4 we obtain the following result.

Corollary 5.1. Let f : N+ → R be a strongly additive function such that |f(p)| ≤ 1 for all
p ∈ P. For k ∈ N+ and x, z ≥ 1, we have

∑
n≤x

(∑
p≤z

fp(n)

)k

= (1 + o(1))

(∑
p≤z

f(p)2

p

)k/2

µkx+O(22kπ(z)k).

6. Proof of the Erdős-Kac Theorem

Now we are in a position to prove the following theorem due to Erdős and Kac [4] con-
cerning the distribution of values of strongly additive functions.

Theorem 6.1 (Erdős-Kac, 1940). Let f : N+ → R be a strongly additive function such that
|f(p)| ≤ 1 for all p ∈ P. Put

A(x) :=
∑
p≤x

f(p)

p
,

B(x) :=

(∑
p≤x

f(p)2

p

)1/2

,

where x ≥ 1. Suppose that B(x)→∞ as x→∞. Then for every k ∈ N+,∑
n≤x

(f(n)− A(x))k = (1 + o(1))(B(x))kµkx, (6.1)

or equivalently, ∑
n≤x

(f(n)− A(n))k = (1 + o(1))(B(x))kµkx. (6.2)
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As a consequence, we have

lim
x→+∞

1

x
·#{n ≤ x : f(n) ≤ A(x) + aB(x)} =

1√
2π

∫ a

−∞
e−t

2/2 dt (6.3)

for any a ∈ R.

Proof. Set z := x1/ log(B(x)+3). Then we have by Lemma 4.2 that

f(n)− A(x) =
∑
p≤z

fp(n) + S(x)

for all n ≤ x, where S(x) = O(log(B(x) + 3)). It follows that

∑
n≤x

(f(n)− A(x))k =
∑
n≤x

k∑
l=0

(
k

l

)(∑
p≤z

fp(n)

)l

(S(x))k−l. (6.4)

Note that∑
n≤x

k−1∑
l=0

(
k

l

)(∑
p≤z

fp(n)

)l

(S(x))k−l ≤
k−1∑
l=0

(
k

l

)
|S(x)|k−l max

0≤l≤k−1

∑
n≤x

∣∣∣∣∣∑
p≤z

fp(n)

∣∣∣∣∣
l

� |S(x)|k max
0≤l≤k−1

∑
n≤x

∣∣∣∣∣∑
p≤z

fp(n)

∣∣∣∣∣
l

� (log(B(x) + 3))k max
0≤l≤k−1

∑
n≤x

∣∣∣∣∣∑
p≤z

fp(n)

∣∣∣∣∣
l

.

It follows from Cauchy-Schwarz inequality and Corollary 5.1 that

∑
n≤x

∣∣∣∣∣∑
p≤z

fp(n)

∣∣∣∣∣
l

≤
√
x

∑
n≤x

(∑
p≤z

fp(n)

)2l
1/2

� √µl(B(z))lx.

Hence ∑
n≤x

k−1∑
l=0

(
k

l

)(∑
p≤z

fp(n)

)l

(S(x))k−l � √µk(B(x))k−1x(log(B(x) + 3))k. (6.5)

Note that

0 ≤ B(x)−B(z) ≤

( ∑
z<p≤x

1

p

)1/2

� (log log(B(x) + 3))1/2.

Thus we have

(B(z))k = (B(x))k +O
(
k(B(x))k−1(log log(B(x) + 3))1/2

)
.

By Corollary 5.1 we have∑
n≤x

(∑
p≤x

fp(n)

)k

= (1 + o(1))(B(z))kmkx+O(22kπ(z)k) = (1 + o(1))(B(x))kµkx. (6.6)
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It follows from (6.4)–(6.6) that∑
n≤x

(f(n)− A(x))k = (1 + o(1))(B(x))kµkx.

Next, we establish the equivalence of (6.1) and (6.2). Indeed, we have∑
n≤z

(f(n)− A(n))k � (log log z)kz � (log log x)kx1/ log(B(x)+3) = o(x).

Similarly, we have ∑
n≤z

(f(n)− A(x))k = o(x).

Note that ∑
z<n≤x

(f(n)− A(n))k =
k∑
l=0

(
k

l

) ∑
z<n≤x

(A(x)− A(n))k−l(f(n)− A(x))l.

By Cauchy-Schwarz inequality and (6.1) we have∑
z<n≤x

|f(n)− A(x)|l ≤
√
x

( ∑
z<n≤x

(f(n)− A(x))2l

)1/2

� (B(x))lx

for 0 ≤ l < k. It follows that∑
z<n≤x

(A(x)− A(n))k−l(f(n)− A(x))l � |A(x)− A(z)|k−l
∑
z<n≤x

|f(n)− A(x)|l

� (log log(B(x) + 3))k−l(B(x))lx

= o((B(x))kx)

for 0 ≤ l < k. Thus we have∑
n≤x

(f(n)− A(n))k =
∑
z<n≤x

(f(n)− A(n))k + o((B(x))kx)

=
∑
z<n≤x

(f(n)− A(x))k + o((B(x))kx)

=
∑
n≤x

(f(n)− A(x))k + o((B(x))kx)

= (1 + o(1))(B(x))kmkx.

This shows that (6.1) implies (6.2). The converse can be proved in a similar way.
Now we prove (6.3). Let

FN(w) :=
1

N
·#{n ≤ N : f(n) ≤ A(N) + wB(N)}

for all N ∈ N+ with B(N) > 0. Then FN(w) is the probability distribution function of some
random variable WN . It follows from (6.1) that

E[W k
N ] =

∫ +∞

−∞
wk dFN(w) =

1

N

∑
n≤N

(
f(n)− A(N)

B(N)

)k
= (1 + o(1))µk.
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This shows that E[W k
N ] converges to µk, which is the same as the kth moment of a normal

random variable with mean 0 and variance 1. Since the normal distribution is completely
determined by all its moments, we have by a well-known theorem [2, Theorem 30.2] in
probability theory that WN converges in distribution to a normal random variable W with
mean 0 and variance 1. This establishes (6.3). �

Remark. It is not hard to show that in (6.3) one can replace A(x), B(x) by A(n), B(n),
respectively. Indeed, we see that A(n) − A(x) = o(B(x)) and B(n) − B(x) = o(B(x)) for
z < n ≤ x. Given any ε > 0, we have

A(x) + (a− ε)B(x) < A(n) + aB(n) < A(x) + (a+ ε)B(x)

for z < n ≤ x with x sufficiently large. Replacing a by a± ε we obtain

A(n) + (a− ε)B(n) < A(x) + aB(x) < A(n) + (a+ ε)B(n)

for z < n ≤ x with x sufficiently large. These are sufficient for proving our claim.

Applying Theorem 6.1 to f(n) = ω(n) we obtain the Erdős-Kac theorem for ω(n).

Corollary 6.2 (Erdős-Kac, 1940). For any a ∈ R we have

lim
x→+∞

1

x
·#
{
n ≤ x :

ω(n)− log log n√
log log n

≤ a

}
=

1√
2π

∫ a

−∞
e−t

2/2 dt.

Let Ω(n) denote the total number of prime divisors of n ∈ N+ with multiplicity. Explicitly,
we have Ω(n) =

∑r
i=1 αi for n = pα1

1 · · · pαrr . It is easy to see that Ω(n) is additive but not
strongly additive. Thus Theorem 6.1 is not applicable to Ω(n). Nevertheless, we can derive
the following result directly from Corollary 6.2.

Corollary 6.3. For any a ∈ R we have

lim
x→+∞

1

x
·#
{
n ≤ x :

Ω(n)− log log n√
log log n

≤ a

}
=

1√
2π

∫ a

−∞
e−t

2/2 dt. (6.7)

Proof. We first compute the average value of Ω(n) for n ≤ x. It is easy to see that∑
n≤x

Ω(n) =
∑
n≤x

∑
pα|n

1 =
∑
n≤x

ω(n) +
∑
pα≤x
α≥2

⌊
x

pα

⌋
=
∑
n≤x

ω(n) + x
∑
pα≤x
α≥2

1

pα
+O(T (x)),

where

T (x) =
∑
pα≤x
α≥2

1 ≤
∑
p≤
√
x

log x

log p
≤ log x

log 2
π(
√
x)�

√
x.

Note that ∑
p>
√
x

∞∑
α=2

1

pα
=
∑
p>
√
x

1

p(p− 1)
<
∑
n>
√
x

1

n(n− 1)
� x−1/2,

∑
p≤
√
x

∑
α>logp x

1

pα
≤ 1

x

∑
p≤
√
x

p

p− 1
≤ 1

x

∑
p≤
√
x

2 ≤ 2√
x
,
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where logp x := log x/ log p. So we have∑
pα>x
α≥2

1

pα
=
∑
p≤
√
x

∑
α>logp x

1

pα
+
∑
p>
√
x

∞∑
α=2

1

pα
= O(x−1/2).

It follows that ∑
pα≤x
α≥2

1

pα
=
∑
p

∞∑
α=2

1

pα
−
∑
pα>x
α≥2

1

pα
=
∑
p

1

p(p− 1)
+O(x−1/2).

Thus we conclude ∑
n≤x

Ω(n) = x log log x+ cx+O

(
x

log x

)
,

where

c = b+
∑
p

1

p(p− 1)
> 0.

This shows that the average value of Ω(n) for n ≤ x is log log x and that∑
n≤x

(Ω(n)− ω(n)) = O(x).

Hence for any ε > 0, the set

Eε :=
{
n ≤ x : Ω(n)− ω(n) > ε

√
log log x

}
is of size

#Eε = O

(
x

ε
√

log log x

)
.

Now fix a ∈ R. On the one hand, we clearly have

#

{
n ≤ x :

Ω(n)− log log x√
log log x

≤ a

}
≤ #

{
n ≤ x :

ω(n)− log log x√
log log x

≤ a

}
.

On the other hand, we have

Ω(n)− log log x√
log log x

=
Ω(n)− ω(n)√

log log x
+
ω(n)− log log x√

log log x
≤ ω(n)− log log x√

log log x
+ ε

for all n ∈ [1, x] \ Eε. This implies

#

{
n ∈ [1, x] \ Eε :

Ω(n)− log log x√
log log x

≤ a

}
≥ #

{
n ∈ [1, x] \ Eε :

ω(n)− log log x√
log log x

≤ a− ε
}
.

By Corollary 6.2 we have

lim
x→+∞

1

x
·#
{
n ≤ x :

Ω(n)− log log x√
log log x

≥ a

}
≥ 1√

2π

∫ a−ε

−∞
e−t

2/2 dt,

lim
x→+∞

1

x
·#
{
n ≤ x :

Ω(n)− log log x√
log log x

≤ a

}
≤ 1√

2π

∫ a

−∞
e−t

2/2 dt.
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Letting ε→ 0 we obtain

lim
x→+∞

1

x
·#
{
n ≤ x :

Ω(n)− log log x√
log log x

≤ a

}
=

1√
2π

∫ a

−∞
e−t

2/2 dt,

which is equivalent to (6.7). �

We close our discussion with two more applications of Theorem 6.1. Consider first

f(n) :=
∑
p|n
p≥3

(−1)
p−1
2 .

Equivalently, we have

f(n) = # {p | n : p ≡ 1 (mod 4)} −# {p | n : p ≡ 3 (mod 4)} .

It is clear that f satisfies the conditions of Theorem 6.1 with A(x)→ A as x→∞ and

B(x)2 = log log x+ b− 1

2
+O

(
1

log x

)
,

where the series

A :=
∑
p≥3

(−1)
p−1
2

1

p

is convergent (see [3, §7]). We conclude that

lim
x→+∞

1

x
·#
{
n ≤ x :

f(n)− A√
log log n

≤ a

}
=

1√
2π

∫ a

−∞
e−t

2/2 dt,

or equivalently,

lim
x→+∞

1

x
·#
{
n ≤ x :

f(n)√
log log n

≤ a

}
=

1√
2π

∫ a

−∞
e−t

2/2 dt.

For another example, consider the function log d(n)/ log 2, which is identically 1 on primes.
It is easy to see that ∑

p≤x

log d(p)/ log 2

p
= log log x+ b+O

(
1

log x

)
,

∑
p≤x

(log d(p)/ log 2)2

p
= log log x+ b+O

(
1

log x

)
.

It follows from Theorem 6.1 that

lim
x→+∞

1

x
·#
{
n ≤ x : d(n) ≤ 2a

√
log logn(log n)log 2

}
=

1√
2π

∫ a

−∞
e−t

2/2 dt.
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